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Wagner’s theory of metal oxidation: assumptions

1. The scale growing on the metal surface is compact in its entirety.
2. Diffusion of reagents in the scale takes place in the form of ions and 

electrons through point defects in the crystalline lattice of the reaction 
product. 

3. The scale formation process is determined by diffusion, the rate of 
which is lower than that of chemical reactions at the interface.

4. Electronic and ionic defects in the crystalline lattice of the scale travel 4. Electronic and ionic defects in the crystalline lattice of the scale travel 
due to ambipolar diffusion. 

5. Diffusion of reagents in the scale proceeds under the influence of a 
lattice defect gradient caused by the oxidant chemical potential 
gradient. 

6. Point defect concentrations are established at the scale interfaces, 
thank to which the oxidation process proceeds according to the 
parabolic rate law.

7. There is a state close to thermodynamic equilibrium at the scale 
interfaces.



f
d

dx N

d

dx
z F

d

dxi
i

a

i
i= = − +








η µ ϕ1

j c B fi i i i=
General equation expressing the flux of component “i”:

j i – flux of component “i”
Bi – mobility of component “i” 
f i – driving force of component “i” 
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ηi  – electrochemical potential of component “i” 
µi – chemical potential of component “i”
Na – Avogadro’s number
F  –Faraday’s constant, C/mol
ϕ – electrical potential 
zi – valence of component “i”



Nernst-Einstein equation:
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Di – diffusion coefficient of component “i”

Taking the equation above into account, the flux of component “i” 
can be expressed as:
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By inserting the fluxes into the equation above, the electrical potential 
gradient can be determined:

z j z j jc c a a e+ − = 0

Because the migration of point defects in the scale takes 
place due to ambipolar diffusion, the electroneutrality 
condition must be fulfilled:
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The chemical potential of the metal and oxidant is associated by 
Gibbs-Duhem’s equation (for an isothermal-isobaric process):

N d N dMe Me X Xµ µ+ = 0

NMe and NX – denote molar fractions of the metal and oxidant, respectively

For compounds exhibiting minor deviation from stoichiometry, the ratio of 
the metal and oxidant molar fractions is inversely proportional to their 
valences:
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Thus, the Gibbs-Duhem equation assumes the following form:
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Ionization reactions of the metal and oxidant:
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In thermodynamic equilibrium conditions:
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After inserting the correlations above, cation and anion fluxes can be 
expressed by the following equations:
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If electron mobility is significantly higher than ionic defect mobility, 
i.e. Da << De >> Dc, then: 
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Scale growth, dX, is the result of reactions at both interfaces:

dX dX dXc a= −

Increase in scale thickness as a function of time at both its 
interfaces is described by Stefan’s condition, which assumes the 
following form:
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After inserting the expression describing the fluxes into the previous 
equation, scale thickness increase can be expressed as:
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Taking into account that:
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Meanwhile:

- self-diffusion coefficient of component “i”Di
*



Because the correlation between self-diffusion coefficients of a 
given substance and its chemical potential gradient is unknown, the 
average value must be calculated: 
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If it is assumed that the scale formation process proceeds 
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If it is assumed that the scale formation process proceeds 
according to the parabolic rate law, then:



From the Gibbs-Duhem equation and the correlation between 
chemical potential and oxidant pressure, the following equation 
can be derived:
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Application of Wagner’s metal oxidation theory
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Example II: calculating the self-diffusion coefficient (Fueki-Wagner method)
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Application of Wagner’s metal oxidation theory
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Example II: calculating the self-diffusion coefficient (Fueki-Wagner method), cont.
nickel oxidation

Fueki-Wagner:

Lindner:

D
RTNi

* , exp= ⋅ ⋅ −





−11 10

503003

Application of Wagner’s metal oxidation theory

Lindner:

Moore:
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Note: the results above were obtained for the same oxygen pressure value
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